A company leverages Amazon Athena for ad-hoc queries against data stored in Amazon S3. The company wants to implement additional controls to separate query execution and query history among users, teams, or applications running in the same AWS account to comply with internal security policies. Which solution meets these requirements?
A financial company uses Apache Hive on Amazon EMR for ad-hoc queries. Users are complaining of sluggish performance. A data analyst notes the following: Approximately 90% of queries are submitted 1 hour after the market opens. Hadoop Distributed File System (HDFS) utilization never exceeds 10%. Which solution would help address the performance issues?
A manufacturing company has many loT devices in different facilities across the world The company is using Amazon Kinesis Data Streams to collect the data from the devices The company's operations team has started to observe many WnteThroughputExceeded exceptions The operations team determines that the reason is the number of records that are being written to certain shards The data contains device ID capture date measurement type, measurement value and facility ID The facility ID is used as the partition key Which action will resolve this issue?
A data analyst is using Amazon QuickSight for data visualization across multiple datasets generated by applications. Each application stores files within a separate Amazon S3 bucket. AWS Glue Data Catalog is used as a central catalog across all application data in Amazon S3. A new application stores its data within a separate S3 bucket. After updating the catalog to include the new application data source, the data analyst created a new Amazon QuickSight data source from an Amazon Athena table, but the import into SPICE failed. How should the data analyst resolve the issue?
An operations team notices that a few AWS Glue jobs for a given ETL application are failing. The AWS Glue jobs read a large number of small JSON files from an Amazon S3 bucket and write the data to a different S3 bucket in Apache Parquet format with no major transformations. Upon initial investigation, a data engineer notices the following error message in the History tab on the AWS Glue console: ''Command Failed with Exit Code 1.'' Upon further investigation, the data engineer notices that the driver memory profile of the failed jobs crosses the safe threshold of 50% usage quickly and reaches 90--95% soon after. The average memory usage across all executors continues to be less than 4%. The data engineer also notices the following error while examining the related Amazon CloudWatch Logs. What should the data engineer do to solve the failure in the MOST cost-effective way?